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Abstract
The field-theoretic description of dynamical critical effects of the influence of
disorder on acoustic anomalies near the temperature of the second-order phase
transition is considered for three-dimensional Ising-like systems. Calculations
of the sound attenuation in pure and dilute Ising-like systems near the critical
point are presented. The dynamical scaling function for the critical attenuation
coefficient is calculated. The influence of quenched disorder on the asymptotic
behaviour of the critical ultrasonic anomalies is discussed.

The progress achieved in the understanding of critical phenomena has largely been due to
theoretical and experimental works devoted to studying the critical dynamics of condensed
media. We have seen from experiments (figure 1) [1] that for a solid an anomalous peak
of ultrasonic attenuation is observable in the vicinity of the critical point. The critical
anomalies exhibited by sound attenuation have long been recognized as important in the study
of dynamical critical phenomena. Ultrasonic methods permit simultaneous measurements of
both static and dynamic properties. Measurements of sound velocities give information on the
equilibrium properties, while measurements of the sound attenuation yield information on the
dynamic properties of materials. The main difficulty in the theoretical discussion of the critical
propagation of sound waves consists in the estimation of the four-spin correlation function.
The method which is based on the representation of the four-spin correlation function through
two-spin correlation functions by means of decoupling leads to overestimated values of the
critical fluctuations.

There are a lot of theories and phenomenological descriptions [2–9] of ultrasonic anomalies
in solids with good agreement with experiments [10–12], but real materials and crystals have
many structural defects and it is worth considering the influence of such defects or disorder
on the dynamical process of sound propagation in solid media. Structural disorder and the
presence of impurities or other defects play an important role in real materials and physical
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Figure 1. Ultrasonic anomaly for experimental attenuation in FeF2 [1].

systems. They may induce new phase transition types and universality classes and modify the
dynamic transport properties.

According to the Harris criterion [13], the critical behaviour of Ising systems is changed
by the presence of a weak quenched disorder. The problem of the influence of disorder
on the critical sound propagation in Ising-like systems has been discussed in [14] with use
of a ε-expansion in the lowest order of approximation. However, our pilot analysis of this
phenomenon showed that in [14] some diagrams which are needed for a correct description of
the influence of the disorder were not considered. Furthermore, our numerous investigations of
pure and disordered systems performed in the two-loop and higher orders of the approximation
for the three-dimensional system directly, together with the use of methods of series summation,
show that the predictions made in the lowest order of the approximation, especially on the basis
of the ε-expansion, can differ strongly from the real critical behaviour [15, 16]. Therefore, the
results from [14] must be reconsidered with the use of a more accurate field-theoretic approach
in the higher orders of the approximation.

In this letter we have realized a correct field-theoretic description of dynamical effects of
the influence of disorder on acoustic anomalies near the temperature of the second-order phase
transition for three-dimensional Ising-like systems in the two-loop approximation.

In our description, we extended the model of the phase transition in a disordered system
with a coupling between nonfluctuating variables [17, 18] to the case (physically important for
structural phase transitions) of a compressible three-dimensional Ising model with frozen-in
lattice defects that is considered in using the renormalization-group method in the two-loop
approximation.

The interaction of the order parameter with elastic deformations plays a significant role in
the critical behaviour of the compressible system. It was shown for the first time in [19] that
the critical behaviour of a system with elastic degrees of freedom is unstable with respect to
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the connection of the order parameter with acoustic modes and a first-order phase transition
is realized. However, the conclusions of [19] are only valid at low pressures. It was shown
in [20] that in the range of high pressures, beginning from a threshold value of pressure, the
deformational effects induced by the external pressure lead to a change in type of the phase
transition.

The Hamiltonian of a disordered Ising model with allowance for elastic degrees of freedom
may be specified as

H = Hel + Hop + Hint + Himp, (1)

consisting of four contributions.
The elastic part is determined from

Hel = 1
2

∫
ddx

[
C0

11

∑
α

u2
αα + 2C0

12

∑
αβ

uααuββ + 4C0
44

∑
α<β

u2
αβ

]
, (2)

where uαβ(x) are components of the strain tensor and Ck
i j are the elastic moduli.

Hop is a magnetic part in the appropriate Ginzburg–Landau form:

Hop =
∫

ddx
[

1
2 τ0S2 + 1

2 (∇S)2 + 1
4 u0S4

]
, (3)

where S(x) is the Ising field variable which is associated with the spin order parameter, u0 is
a positive constant and τ0 ∼ (T − T0c)/T0c with the mean-field phase transition temperature
T0c.

The term Hint describes the spin–elastic interaction

Hint =
∫

ddx

[
g0

∑
α

uαα S2

]
, (4)

which is bilinear in the spin order parameter and linear in deformations. g0 is the bare coupling
constant.

The term Himp of the Hamiltonian determines the influence of disorder and it is considered
in the following form:

Himp =
∫

ddx
[
�τ(x)S2] +

∫
ddx

[
h(x)

∑
α

uαα

]
, (5)

where the random Gaussian variables �τ(x) and h(x) are the local transition temperature
fluctuations and induced random stress, respectively. Taking the �τ(x) fluctuations into
account causes additional interaction of order parameter fluctuations over defects and
renormalization of the phase transition temperature for disordered systems. Taking into account
the h(x) fluctuations leads to renormalization of the elastic moduli and the coupling constant
in the spin–elastic interaction.

The Fourier transformed variables become

uαβ = u(0)
αβ + V −1/2

∑
q �=0

uαβ(q) exp(iqx), (6)

with uαβ(q) = i/2[qαuβ + qβuα]. Then the normal-mode expansion is introduced as
�u(q) = ∑

λ �eλ(q)Qq,λ with the normal coordinate Qq,λ and polarization vector �eλ(q). We
carry out the integration in the partition function with respect to the nondiagonalcomponents of
the uniform part of the deformation tensor u(0)

αβ, which are insignificant for the critical behaviour
of the system in an elastically isotropic medium.
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After all of the transformations [21], the effective Hamiltonian of the system has become

H̃ = 1
2

∫
ddq (τ0 + q2)Sq S−q + 1

2

∫
ddq �τ−q Sq1 Sq−q1

+ 1
4 u0

∫
ddq Sq1 Sq2 Sq3 S−q1−q2−q3 +

∫
ddq qh−q Qq

− 1
2w0

∫
ddq (Sq S−q)(Sq S−q) − g0

∫
ddq q Q−q Sq1 Sq−q1

+ a
∫

ddq q2 Qq Q−q . (7)

The renormalization-group analysis of the critical behaviour of the disordered compressed
Ising model with the Hamiltonian (7) was carried out in our paper [21], and different fixed
points for the Hamiltonian (7) and conditions of their stability were determined in the two-
loop order of the approximation with the use of the Padé–Borel summation technique. It was
shown that the �τq fluctuations are relevant for the critical behaviour of the Ising model and
the replica averaging procedure over �τq leads to a new vertex of interaction for the order
parameter fluctuations. It was shown in [21] that random stresses connected with hq in (7) can
lead to multicritical behaviour of a system if certain conditions are fulfilled.

The critical dynamics of the system in the relaxational regime can be described by the
Langevin equations [22] for the spin order parameter S(q) and phonon normal coordinates
Q(q):

Ṡq = −�0
∂ H̃

∂S−q
+ ξq + �0hS,

Q̈q = − ∂ H̃

∂ Q−q
− q2 D0 Q̇q + ηq + hQ,

(8)

where �0 and D0 are the initial kinetic coefficients, ξq(x, t) and ηq(x, t) are Gaussian white
noises.

The quantities of interest are the response functions G(q, ω) and D(q, ω) of the spin and
deformation variables, respectively. It can be obtained by linearization in corresponding fields
that

D(q, ω) = δ
[〈Qq,ω〉] /δhQ = [〈Qq,ω Q−q,−ω〉] , (9)

G(q, ω) = δ
[〈Sq,ω〉] /δhS = [〈Sq,ωS−q,−ω〉] , (10)

where 〈· · ·〉 denotes averaging over Gaussian white noises, [· · ·] denotes averaging over random
fields �rq and h−q .

The response functions may be expressed in terms of self-energy parts:

G−1(q, ω) = G−1
0 (q, ω) + (q, ω),

D−1(q, ω) = D−1
0 (q, ω) + �(q, ω),

(11)

where the free response functions G0(q, ω) and D0(q, ω) have the forms

D0(q, ω, λ) = 1/
(
ω2 − aq2 − iωD0q2) ,

G0(q, ω) = 1/
(
iω/�0 +

(
τ0 + q2)) .

The characteristics of the critical sound propagation are defined by means of the response
function D(q, ω). Thus, the coefficient of ultrasonic attenuation is determined through the
imaginary part of �(q, ω):

α(ω, τ) ∼ ω Im �(ω). (12)
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Figure 2. The diagrammatic representation of the �(q, ω) in the two-loop approximation. Solid
line (a) corresponds to G0(q, ω), solid line with a cross (b) is 2 G0(q, ω)G0(−q,−ω)/�0 and
vertex with a dashed line (c) corresponds to v = [(�τ)2].

The self-energy part �(q, ω) was obtained by iterative solution [23] of the dynamic
equation (8) with the effective Hamiltonian (7). The diagrammatic representation of �(q, ω)

in the two-loop approximation is presented in figure 2.
The Feynman diagrams involve momentum integrations in dimension d (in our case

d = 3). Near the critical point the correlation length ξ increases infinitely. When ξ−1 � �,
where � is a cut-off in the momentum-space integrals (the cut-off � serves to specify the basic
length scale), the vertex functions are expected to display an asymptotic scaling behaviour
for wavenumbers q � �. Therefore, one is led to consider the vertex functions in the limit
� → ∞. The use of the renormalization-group scheme removes all divergences which arise
in thermodynamic variables and kinetic coefficients in this limit.

We have applied the matching method which was introduced for statics in [24] and
generalized for critical dynamics in [4]. First, we use the dynamical scaling property of
the response function

D (q, ω, τ ) = e2l D
(
qel, (ω/�0) ezl , τel/ν

)
, (13)

and then we calculate the right-hand side of this equation for some value l∗ = l, where the
arguments do not all vanish simultaneously [24]. The choice of l∗ is determined by

(ωl/2�0)
4/z + χ−2

l = 1. (14)

Equation (13) guarantees that at least one of the arguments of the right-hand side of (14)
is finite. The particular form of the matching condition (14) containing the exponents z and ν

permits an explicit solution for l∗:

el = τ−ν
[
1 + (y/2)4/z

]−1/4 ≡ τ−ν F(y, τ ). (15)

In (15) the abbreviation y = ωτ−zν/�0 is introduced and F(y, τ ) is defined. The value of
the exponent ν was calculated in [21] for the corresponding fixed point. The exponent z was
taken from [25] for the 3D disordered Ising model considered for purely relaxational model A.
The coupling of the order parameter with elastic deformations is irrelevant for the dynamics
of a disordered system with a negative specific heat exponent [26].

The response function D
(
qel, (ω/�0) ezl, τel/ν

)
on the right-hand side of (13) is

represented by the Dyson equation (11) and for the self-energy part we obtain

Im �(ω)

ω
= exp

(
l
(α + zν)

ν

)
Im �(ωezl)

ωezl
. (16)
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Figure 3. Scaling functions for the critical sound attenuation φ(y) in a double-logarithmic plot for
pure (1) and disordered (2) Ising systems.

It may be argued [4] that condition (14) together with the well-known expression for the
susceptibility [14] provides an infrared cut-off for all divergent values.

It was shown in later theoretical works [3, 12] that in asymptotic regions the coefficient
of attenuation can be described using a simple scaling function of the variable y only. The
experimental investigations performed on the three-dimensional crystals Gd [11] and MnP [12]
confirmed the validity of the concepts of dynamical scaling.

Thus after renormalization procedure (16) we can define a scaling relation in the form

Im �(ω)/ω = τ−α−zνφ(y), (17)

where φ(y) is a dynamical scaling function:

φ(y) = g∗2�0

π

Fα/ν+1/2ν−z

y2


1 −

[
1

2

(
1 +

y2 F2z−2/ν

4

)1/2

+
1

2

]1/2



− 12g∗2u∗�2
0

π2

Fα/ν+1/ν−2z

y3




[
1

2

(
1 +

y2 F2z−2/ν

4

)1/2

− 1

2

]1/2

− y Fz−1/ν

4




+
8g∗2v∗

(4π)3

Fα/ν−z

y2
φimp(y), (18)

where g∗, u∗ and v∗ are values of vertices in the fixed point of renormalization group
transformations [21], φimp (y) is the numerically calculated contribution of diagrams in � (ω)

(figure 2) characterizing the influence of disorder.
The dynamical scaling function φ(y) is plotted against y on a double-logarithmic scale

for pure and disordered systems in figure 3. We have thus seen that the presence of disorder is
irrelevant for the scaling behaviour in the hydrodynamic region with y � 1 (T � Tc), but it
has a drastic effect in the critical region with y � 1 (T → Tc).

The anomalous temperature dependence of the calculated attenuation coefficient for pure
and disordered systems is shown in figure 4. Comparison of curves (1) and (2) in figure 4
clearly reveals the strong influence of disorder on the temperature dependence of the attenuation
coefficient in the vicinity of the critical point. We hope that these theoretical results will create
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Figure 4. Thermal dependences of the ultrasonic attenuation at the critical point for pure (1) and
disordered (2) systems in comparison with experimental results (3) for FeF2 [1].

Table 1. Asymptotic behaviour of the attenuation coefficient in the hydrodynamic (T � Tc) and
critical (T → Tc) regions.

System Region α(ω, τ )

Pure T � Tc ω2τ−1.38

T → Tc ω0.914

Disordered T � Tc ω2.02τ−1.47

T → Tc ω1.23τ−0.26

Pure [5] T � Tc ω2.03τ−1.33

T → Tc ω0.913

a demand for ultrasonic experimental investigations of dilute Ising-like systems, for example
samples of FexZn1−x F2. In producing the figure we used the fact that the presence of disorder
causes a reduction of the phase transition temperature Tc in relation to that of the pure system.
A model representation of the calculated attenuation coefficient for the pure system is shown in
figure 4 in comparison with experimental data (3) for FeF2 [1]. Adjustment of the experimental
data permitted us to determine the value of the theoretical parameter �0 and then calculate the
attenuation coefficient for the disorder model. We should note that the observable differences
from the experimental results below Tc are explained by the contribution of the order parameter
relaxation effects to the attenuation, which always occur below Tc. The relaxation effects are
not considered in this letter, but the contribution of fluctuations to the attenuation coefficient
is relevant over the whole critical range.

From (12) we find that the sound attenuation coefficient obeys the asymptotic scaling
relation

α (ω, τ) ∼ ω2τ−α−νzφ (y) . (19)
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On the basis of the dependences (18) obtained, we calculated the exponents of the
asymptotic behaviour of the attenuation coefficient in the hydrodynamic and critical regions
(table 1). We see from the table that in the critical region the anomalies of the attenuation
coefficient must be observed in both pure and disordered systems. But for disordered systems
the anomalies of the temperature and frequency dependences of the attenuation coefficient
must be stronger than those for pure systems. These conclusions are also shown in figure 4.

We hope that theoretical estimates of the attenuation coefficient carried out in this paper
create a great demand for detection of the anomalies which are found to be induced by quenched
disorder in ultrasonic experimental investigations of critical dynamics.

This work was supported by the Russian Foundation for Basic Research through Grants
(Nos 04-02-17524, 04-02-39000 and 05-02-16188) and the Ministry of Education and Science
of Russia through Grant No UR.01.01.230.
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